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Abstract--Maxwellian fluid [low between asymmetric calenders was analyzed by the numerical solu- 
tion to the simplified equations of motion and energy equation. The solution techniques combined the 
power-law weighted upwind difference method for the energy equation with the analytical solution of the 
momentum equations. The calculated results provided not only pressure and temperature distributions of 
the flow field, hut also the power consumption and the roll separating force of the calendering processes. 
The decrease in the elastic shear modulus led to the reduction in the temperature profile as well as in the 
power requirement. The asymmet~ in the roll speeds generated higher temperature field throughout the 
whole flow region due to the higher viscous heating, compared with the case of the symmetry in the roll 
speeds. 

INTRODUCTION 

Calendering process is commonly used for shaping 
fihns of thermoplastic materials and is particularly 
suitable for polymers succeptible to thermal degrada- 
tion. This is usually accomplished by a pair of heated 
driven rolls with equal or unequal diameters in a 'Z' or 
'inverse L' arrangement. 

The early hydrodynamic theory of calendering was 
developed by Gaskell [1]. The validity of his model was 
confirmed by the experimental measurement of 
pressure distribution perfornred by Bergen and Scott [2]. 

Following the Gaskell's model, a great deal of effort 
was invested to the theoretical analysis on the calender- 
ing processes by numerous workers. Most of these ef- 
forts concentrated on dealing basically with more 
realistic constitutive equations and attempted to account 
for nonisothermal effects. Mckelvey [3], Brazinsky et al. 
[4] and Turner [5] discussed the power-law fluid, while 
Alston and Astill [6] treated a hyperbolic tangent model. 
Paslay [7] obtained an approximate solution essentially 
based on the Maxwell fluid for the Weissenberg number 
smaller than unity. The results of his numerical solution 
indicated that the pressure and the shear stress dropped 
as the elastic shear modulus was lowered. Tokita and 
White [8] related the experimental results on milling of 
elastomers to rheological parameters of the second order 
Rivlin-Ericksen fluid. Chong [9] found by experiment 
that the Weissenberg number was an important 
parameter in determining the onset of a nonuniform in- 
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ternal strain pattern. 
The problems of the asymmetric rolls and roll speeds 

and nonisothermal systems attracted much attention 
without much progress until recently despite their prac- 
tical importance. Takserman-Krozer, et al.[10] treated 
the asymmetrical problem of Newtonian fluid analytical- 
ly by using the bipolar cylindrical coordinates. 

Kiparissides and Vlachopoulous[11] studied the 
viscous heating effect of the power-law fluid in the sym- 
metric calenders by using the finite element method. 

Following the earlier work[ 12], the study is extended 
to the problems of viscoelastic fluid flow between asym- 
metric calender rolls which rotate at different roll 
speeds. The asymmetry and the nonisotbermal effect 
due to the viscous dissipation incorporated with the 
Jaumann-Maxwell fluid[13] by the use of the finite dif- 
ference method and the bipolar cylindrical coordinates. 
Parameters are investigated through the calculations of 
the pressure distribution and the power consumption for 
the optimum operating conditions. The effect of relaxa- 
tion time of the fluid on the power requirement is also 
examined in terms of the Weissenberg number. 

MATHEMATICAL MODEL AND GOVERNING 
EQUATIONS 

We considered an incompressible linear viscoelastic 
fluid flow between the asymmetric calenders with une- 
qual diameters and/or different rotating speeds as il- 
lustrated in Fig 1. The fluid in calendering is highly 
viscous so that the inertia force becomes negligibly 
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Fig. 1. Asymmetric  calender roll geometry.  

small. It is also assumed that the rollers are completely 
rigid and the nip distance is ve.ry small compared with 
the length of other geometric parameters of calenders. 
For sufficiently small nip distance, the metric tensor of 
the bipolar coordinate can be approximated as 

a 
h 

1-- cos~: (1) 

and h bevomes a function of s e only. Applying the above 
assumptions and also lubrication approxfmation the 
governing equations are given as follows. 

o (hu)+~9 7 (by)= 0 (2) Continuity 0--~ ) 

Momentum a P  Or~,~. (3) 
a~  art 

OP 
- - =  0 (4) 
art 

.u a T  v a T .  
Energy p C p ( ~ - ~ - +  t - 7 ~ )  

k , a ' T  O'T a u 

When a linear viscoelastic fluid model is applied to a 
large displacement problem, the corotating frame is 
more appropriate than the material frame. The con- 
stitutive equation for the Jaumann-Maxwell fluid is ap- 
proximately given as 

r.:,,-- A2 ar/a ( h )  ( r . . - -  r , . j  -- - , u ~ - a  ( h )  (6) 

a u 
tee= -- k{-~- (T)  } re,, (7) 

{:3 u . I8) 

Substituting equations (7) and (8) into equation (6) 
results in 

a U U 
r , . ,=--  . { ~ ( g ) } / ( l q  X'{ a '1 (h-)} (9) 

Boundary conditions on the roll surfaces and at the 
inlet and outlet must be specified, in addition to the in- 
itial distribution for the temperature. We assumed that 
the calender gap is initially filled with an incompressible 
fluid whose temperature is the same as that of the feed 
stream. Thus 

T - T o  for ~:*-<-~<--,fo,--rt.<--rt<rt, (10) 

With constant temperature and no slip condition on 
each roll surface, the boundary conditions are 

u - : U , , T = T ,  at rt=rt, (11) 

u - : U ~ , T = T ,  at r t - - - ~  (12) 

v ":(} at  rt=rt,  and rt----r?,  (13) 

To find the relationship between the entrance coor- 
dinate {:o and the exit coordinate ~:*, it is assumed that 
when the fluid enters and leaves the deformation zone, 
the pressure is equal to zero and the pressure gradient at 
the exit coordinate equals zero such that 

P~ 0 at ,~=,~o (14) 

p a P  
- - : ~ =  0 ~, ~=~* (15) 

ANALYTICAL SOLIYrlON FOR THE ISOTHER- 
MAL SYSTEM 

I. Ve loc i ty  a n d  p r e s s u r e  d i s t r ibut ion  
With lubrication approximation, the pressure gra- 

dient becomes independent of the coordinate r/ as 
shown in equations (3) and (4). Upon integrating equa- 
tion (3) with respect to rt after equation (9) is substituted 
into equation (3), we find the nonlinear differential 
equation of the form 

a ( u ) ~  --1 a P  + , a u 
--art h (T-ST0+c,) (1 a I ~  (g) l~ (16) 

aO ~u. 
The above equation can be simplified when ~T ( h )  
<< 1 as follows. 

lap+c,,+,, lap_ c . . . .  

a~  

Integrating the equation (17) with respect to rt gives the 
velocity profile such that 

, c 1 0 P  , .  u 2 t ' , a P , . .  

( - - 1 - ~ - ~ r t +  C,) ' + C ,  ] (18) 
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Integration of the equation of continuity with the boun- 
dary condition (13) from- ~ to r~ gives 

f r / ,  0 
-r/, ~ - ( h u )  &7= 0 (19) 

Hence the volumetric flow rate per unit width through 
the rolls at the steady state is written as the integral form 

Q = f r ~ ,  (hu) d~7 (20) 
J--712 

At the exit coordinate ~*, Q is expressed by 

Q*= (rh 4- r~,)h* ( U , + U , ) / 2  (21) 
The nonlinear algebraic equations are obtained from the 
equations (18), (20) and (21) together with the boundary 
cor.~ditions (11) and (12). To determine the three 

3P 
uni:nowns 0 ~ '  C~ and C 2, the Newton-Raphson method 

is used. 

The initial trial values for the three unknowns are 
chosen as those for the Newtonian fluid, which is 
analytically obtained under the isothermal condition. 
The relative tolerance for convergence limit for each 
unknown was taken as 10 -s. 

The shear stress and normal stress distributions are 
calculated. The velocity component in r~ direction is ob- 
tained from the equation of continuity. The pressure 
profile along the passage of the fluid is obtained by in- 
tegrating the pressure gradient at each cross section by 
means of trapezoidal rule. 

P ~  . ~ -  d~ (22) 

The entrance coordinate ~e o is calculated from the equa- 
tion (22) in which the pressure equals the ambient 
pressure. It represents the minimum hank region to pro- 
duce a certain film thickness for the given operation 
conditions, depending on the geometric, kinematic and 
rheological parameters. 
2. P o w e r  consumpt ion  and roll  separat ing  

force  
The dissipated power it, the flow field between two 

rotating rolls is generally expressed as [ 10,16] 

W-- f se~ fr/,_r/, X, X m r,m ?m~ h'd;Td,f (23) 

The power requirement per unit volumetric flow rate is 
obtained by E = W/Q which is an important characteris- 
tic of the calendering process, since it stands for the 
specific energy requirement of the process. 

In practice, the film thickness produced is controlled 
by the geometry of the calenders, especially by the nip 
distance. The roll separation caused by the stress acting 
on the roll surfaces in the normal direction must be ad- 
justed by the loading force in order to balance the reac- 
tive force of the calendered fluid. This roll separating 
force per unit width is expressed for the Maxwell fluid 

by 

v = f ~ ;  h (-p+ r,.) d,f (24) 

FINITE DIFFERENCE METHOD FOR THE 
NONISOTHERMAL SYSTEM 

A finite difference approximation of the energy equa- 
tion of elliptic type at the steady state with the viscous 
dissipation term is involved in this study. A two dimen- 
sional network in the deformation region is constructed 
by 81 x 41 mesh system, which is uniform with respect 
to each of the coordinate, ~ and rL In this problem, the 
power-law weighted upwind difference scheme[14] is 
utilized to overcome the numerical instability of the cen- 
tral difference scheme when the grid Peclet number is 
larger than 4. This numerical scheme is the modified 
form of the upwind scheme in that the diffusion term is 
multiplied by the correction factor A (I Pe[ ), 

A( I  P e l  ) = M a x { 0 ,  (1 -0. 1 I Pe I )'} (25) 

where Pe is the grid Peclet number. 
From the known velocity profiles and the initial 

temperature distribution, the temperature field at the 
next iteration step is computed. This iteration is con- 
tinued until a certain convergence criterion is satisfied. 
The convergence criterion of the relative temperature 
was taken as 10 -4 . Once the temperature convergence 
was obtained, new field values of the viscosity and the 
relaxation time were calculated. The calender gap is so 
small that it is meaningless to calculate the viscosity 
field at each grid point. For this reason, the viscosity 
field is treated from the macroscopic point of view, e.g., 
mean effective viscosity corresponding to the average 
temperature at each cross section. The definition of the 
average temperature is given as follows. 
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The relationship between the rheological properties and 
temperature can be expressed as 

/2 /20 exp ( -- AE,/RTav) 

G=GopTa~ (27) 
Thus, the change in these theological properties due to 
the variation in the temperature distribution results in 
the improved pressure and velocity distributions. The 
whole procedure is repeated until the desired accuracy 
is achieved, which provides the temperature, velocity 
and pressure distributions at the steady state. 

RESULTS AND DISCUSSION 

The asymmetric calendering with unequal diameters 
and different rotating speeds showed quite different 
results in the pressure distributions compared with the 
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symmetric cases. It is interesting to note that for the 
same rotating speeds, the pressure profile becomes max- 
imum as presented in Fig 2 and when the rotaing speed 
ratio is. far from unity the pressure profile decreases. For 
the Maxwell fluid which has the effect of the shear 

O u 
dependent viscosity expressed as/1/[1 ~ ),' t ~ -  (~-) i ' ) ,  

8 f i l 

6 

0 

Fig. 2. 

U z / [ i  ~ 

L : 0 . 3 / 0 . 3  

i Ii : 3. ! ! i , /C.45 

~iII ; 0 . 1 / g . 5  

5 4 3 2 

Pressure  profile for di f ferent  roll speed 

ratio; R,/R, 0. 3/0.3, H 0.0001m, ~ - 2 . 3 9 5 ,  

,u=400Pa. s, A= 10 ' sec.  

a speed difference between the rollers induces a 
distorted velocity profile with larger shear rate. The 
decreasing pressure is attributed to the corresponding 
drop in the apparent viscosity. The pressure obviously 
increases as the sum of the roll radii becomes large 
simply because the resistance for the flow toward the ex- 
it goes up as the sum of the roll radii increases. The ef- 
fect of roll radius ratio on the pressure force has been 
also examined, keeping the sunt of the radii constant in 
order to minimize the effect of the variable cross section. 
The asymmetry in roll size causes slightly lower 
pressure force than the case of symmetry because the 
resistance in the nip is lowered with the increase in the 
asymmetry as shown in Figure 3. However, the relative 
reduction in maximum pressure due to the asymmet~ 
in roll size is very small as compared to that due to the 
asymmetry in roll speed. This is because the shear 
deformation field is much more affected by the asym- 
metry in the rotating speeds than in diameters. Figure 4 
shows the roll separating force and the power consump- 
tion per unit volumetric flow rate for various roll size 
ratio, keeping the sum of radii constant. The symmetry 
in roll size causes a little larger shear rate than the case 

2 

E 

c 

• 1 

' R , / R , = 0 . 7 /  0.7 ' 

L 

5 4 3 

Fig. 3. Pressure  profile for various calender g e -  

om etries;  U , / U , - 0 .  3/0. 3, H = 0.00 lm, s ~* 

2. 395,/~= 400Pa. s, A=10 ~ sec. 

lOC 

50 

v - -  I0 

X ;K ~ 5 

' I 

- - P o w e r  consumption 

---Roll separating force 

I ; R , + R , = 0 . 6 m  

I] ; R , §  1.4m 

1 
O. 

/ 1 

0.5 1 5 

R , / R ,  

Fig. 4. 

10 

P o w e r  consumption and roll s e p a r a t i n g  

force for various roll radius ratios; U , /U ,  

--0.3/0.3, H-O. OOOlm,,u: 400Pa. s,X k 10' 

sec, ~ * -  2.395. 

of asymmetry, which brings about the maximum sepa- 
rating force as well as the maximum power consump- 
tion. Meanwhile, the change in roll speed ratio with the 
sum of roll speeds constant shows a somewhat different 
result. In Fig. 5, the roll separating force attains a max- 
imum when the roll speeds are the same with the same 
roll size. This fact must be understood in the meaning 
that the gradient of shear rate is the greatest when the 
rotating speeds are the same. The power consumption 
is, however, on the contrary. The larger the asymmetry 
in the roll speed ratio, the larger the shear deformation 
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Fig. 5. Power consumption and roll separating 

force for various roll speed ratios; R , / R ,  

=0. 3/0. 3, H=0.  0001m, #*=2.  395, ~ =  400 

Pa. s, A = 10- '  sec. 

10 

8 

• 6 

? 

X 

100 

l0 
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:~ 2.395 
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Fig. 6. Relationship between power consumption 

per unit volume f low rate E and roll sp- 

eed ratio; U ,~0 .  3m/s,  R2/R2:~0.4/0. 2, H = 

0. 0001m,/z=400Pa. s, A -  10 ' sec. 

becomes, and the less the power consumption at the 
same roll speeds. Figure 6 reveals that the effect of roll 

177 

4 - 

' J I 
i~ I q~f=L'.4/O, d 

k] qu : 0 . 3 / O .  ~ 
J / i  

I I  

I; ~:I0- sec 

I I I 
1.5 2 2.5 3 

( U , + U , ) / U ,  

Fig. 7. Power  consumption per unit vo lumetr ic  

flow rate for various relaxation t imes  of  

fluids; U~O. 3m/s, H=0.  0001m, #*=2.395,  

g=400Pa ,  s. 

speed ratio on the power consumption E becomes larger 
as the film thickness decreases and a minimum power 
consumption per unit volumetric flow rate exists for dif- 
ferent roll speeds in the case of realistic condition of 
film separation. It appears more advantageous when 
U2/U 1 is slightly smaller than unity accordingly, with U l 
fixed, as in Figure 6. The relationship between the 
power consumption E and the roll speed ratio for 
various relaxation times of fluids and for the same/dif- 
ferent roll sizes is shown in Fig. 7. As the relaxation time 
or the Weissenberg number increases, which cor- 
responds to increase in stiffness of the material, the 
power consumption decreases for the geometric condi- 
tions of interest. This can be explained by the reduction 
in the shear rate due to the increase in the fluid elastici- 
ty. 

For the nonisotherma[ conditions, the temperature 
rise mainly caused by the viscous heating and also by 
convection and conduction leads to the reduction in the 
apparent viscosity and in the shear modulus. The dif- 
ference between the isothermal and nonisothermal 
pressure profiles are illustrated in Fig. 8. It is an in- 
teresting fact that the minimum bank region expands for 
the nonisothermal case under the given processing con- 
ditions compared with the' isothermal case, bringing 
about the growth of the entrance zone. From this result, 
it is observed that a point is eventually reached where 
the velocity of the fluid is zero, which is called the 
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Fig. 8. Comparison of isothermal and non-isothe- 

rmal pressure profiles; R, /R,=0.  1 /0 .2 ,  

U,/U,=0.  3/0. 4, ~*=2. 356, H=0. 0001m, 

To = % = 4 5 3  ~ K, T,=443~ K=9.23 x 10 -~ 

W/m ~ K, 

stagnation point. Therefore, in the upstream region, 
there exists the stagnation envelope which clearly con- 
firms the. existence of the recirculating flow. The locus of 
the stagnation envelope is presented by the dashed line 
as in Fig. 9. The temperature profile developed for the 
condition of the same rotaing speeds is plotted in Fig. 
10. The shear force is greater near the roll surfaces, 
hence the two maxima are distinctly observed in the 
vicinity of the roll surfaces in the upstream region. The 
temperature in the central part of the flow field rises pro- 
gressively in the further downstream. At the exit plane 
the maximum is located at about 1/3 of the half gap 
width from the wall. It is also noted that the value of 
maximum temperature rises steeply in the inlet region, 
and drops steadily down to the region of (2r~-~*). Then it 
rises again slightly near the nip and drops at the exit as 
illustrated in Fig. 11. The existence of the two maxima 
along the flow direction observed in this study agrees 
with the results for the power-la~ fluid flow obtained by 
Kiparissides and Vlachopoulos [11] and also with Lee's 
[12] results to the extent of the tendency. Meanwhile, 
Torner's finite difference solution gave only one max- 
imum along the flow direction. However, a careful ex- 
amination of the experimental profiles of Petrusanskii, 
et a1.[16] reveals the existence of a weak second max- 
imum along the flow direction, agreeing with the pre- 
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~ X  I III ' 

Fig. 9. 

2,,f 
~T 
(o 

O[ 

Stagnation envelope at the entrance coo- 

rdinate; R,/  R,=0. 1/O. 2, U,/U, ~0 .  3/0. 4, 

~*=2. 356, H =0. 0001m, To=T,=453 ~ K T, 
-443  ~  23x 10-' W/m ~ 

r I l ] 473 

I 

I% 
~ = 4. 645 o ~ r - ~ ' ~ / . ~  1 4 ~ 3 K ) .  458 

J - F~- - ~ - ~  - ------..]453 
3. 65 2. 28 0.91 -0.46 -1.83 

' r?• 102 

Fig. 10. Temperature distribution at the three di- 

fferent cross-sections; IL/R2:0 .  1 / 0 . 2 ,  

U,/U2=0. 3/0.3, H-0 .  0001m, ~*-- 2. 395. To 

- T , ~ T 2 - 4 5 3 ~  

sent result. On the other hand, a difference in the roll 
speed exhibits unusual features in the temperature pro- 
files, compared with the case of the same rotating 
speeds. When the difference in the roll speeds is larger, 
the velocity profile is almost linear and the shear 
becomes greater. Hence the influence of the viscous 
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s 395 / 

/ ~'~ ~ ~=4. 6 4 5 |  
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Fig. 12. Temperature distribution at the two diff- 

erent cross- sectioJm; R,/R,-=0. 1/0. 2, U, / 

U, =0.2/0.  4, H =0. 0001m, ~*=2. 395, To = 

T, = T ,=  453 ~ K. 

the occasional appearance of blisters in calendered 
sheet, as pointed out by Finston.[15] 

473 

468 

~ 463 

458 

453 

CONCLUSIONS 

1. An analytical solution is obtained for the linear 
viscoelastic Jaumann-Maxwell fluid flow in the 
isothermal calendering process. This approximation 
is valid when the Weissenberg number does not ex- 
ceed the value of 1.0. 

2. The numerical results of this study indicates that the 
increase in the relaxation time of the fluid leads to 
the reduction not only in the power requirement but 
also in the temperature profiles. 

3. The maximum temperature profile along the flow 
direction in the case of the same roll speed has 
shown two peaks, the first strong and the second 
weak, as evidenced experimentally. 

4. The asymmetry in the roll speeds leads to the higher 
temperature profile throughout the whole flow field 
due to the effect of high viscous heating than the 
symmetric cases in the roll speeds. 

5. The effect of roll speed ratio both on the maximum 
pressure and on the power consumption was signifi- 
cant over the effect of roll size ratio. 
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a : 

C~, C2: 
Cp: 
E :  

NOMENCLATURE 

heating is severe throughout the whole flow field, not 
confined to the vicinity of the roll surfaces. The resulting A El: 
temperature profiles for the Maxwell fluid are compared F : 
with those for the Newtonian as an example in Fig. 12. G : 
It is interesting to note that in the inlet region the Ioca- H : 
tion of a maximum is found near the surface of the fast h : 
rotating roll, while at the exit it is shifted to the vicinity k : 
of the surface of the slowly rotating roll. As a whole, the P : 
temperature profile is higher for the Newtonian fluid Pc : 
than for the Maxwell fluid. This can be explained by the Q : 
reduction in shear due to the increase in the fluid Q*: 
elasticity. From the results, it may be stated that the R~, R2: 
asymrnetry in roll speeds might play an important role 
in determining the size and location of the maxima in U~, U2: 
temperature profiles, which may explain the reason for 

half distance between the poles (m) 
integration constants 
specific heat of the fluid (J/Kg ~ 
power consumption per unit volumetric flow 
rate (W) 
activation energy for flow (J/Kg mole ~ 
roll separating force (N) 
elastic shear modulus (N/m 2) 
roll separation at the nip (m) 
variable defined by eq. (1) (m) 
thermal conductivity (J/m ~ 
pressure (N/m 2) 
grid Peclet number 
volumetric flow rate per unit width (m3/sec) 
Q at ~ = ~ * (m3/sec) 
radius of upper ~ind lower calendering roll 
(m) 
linear velocity of the calendering rolls, 
respectively (m/sec) 
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T: 
To, T1, T2 : 

U, V" 

~,T/: 

#: 
,U: 

5': 

temperature (~ 
initial fluid temperature and roll surface 
temperatures, respectively (~ 
velocity in ,f and ~, direction, respectively 
(m/sec) 
bipolar cylindrical coordinates 
values of 7] at the wall o! the rolls 
the entrance and the exit coordinates 
fluid density (Kg/m~ 
viscosity of the fluid (Pa. sec} 
relaxation time of the fluid {sec) 
stress tensor (N/m 2) 
rate of deformation tensor (sec -l) 
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